Answer on Question \#45360, Physics, Mechanics | Kinematics | Dynamics

A typical laboratory centrifuge rotates at 4000 rpm . Test tubes have to be placed into a centrifuge very carefully because of the very large accelerations.
(a) What is the acceleration at the end of a test tube that is 10 cm from the axis of rotation?
(b) For comparison, what is the magnitude of the acceleration a test tube would experience
if dropped from a height of 1.0 m and stopped in a $1.0-\mathrm{ms}$-long encounter with a hard floor?

Solution.

a)

The relation for the centripetal acceleration is:
$a_{C}=\omega^{2} R=4 \pi^{2} f^{2} R$
Where f is a frequency of rotation, R - distance from axis of rotation to the end of the tube.

Numerically:
$a_{C}=4 \cdot 3.14^{2} \cdot\left(4000 \frac{1}{60 s}\right)^{2} \cdot 0.1 \mathrm{~m} \approx 17.5 \cdot 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

b)

Just before hitting the floor tube has the speed:
$V=g t$
Where t is the time of falling. It can be obtained from relation:

$$
\begin{gathered}
\frac{g t^{2}}{2} \rightarrow t \quad \sqrt{\frac{2 h}{g}} \\
V \quad g \sqrt{\frac{2 h}{g}} \quad \sqrt{2 g h}
\end{gathered}
$$

After hitting the floor speed of the tube is equal to 0 , so acceleration is:
a $\quad V / \Delta t$
Where Δt is the time of interaction of tube with the floor. So:
a $\frac{\sqrt{2 g h}}{\Delta t}$
Numerically:
$a \frac{\sqrt{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 1 \mathrm{~m}}}{0.001 \mathrm{~s}} \approx 4.4 \cdot 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Answer:

a) $a \approx 17.5 \cdot 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
b) $a \approx 4.4 \cdot 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

