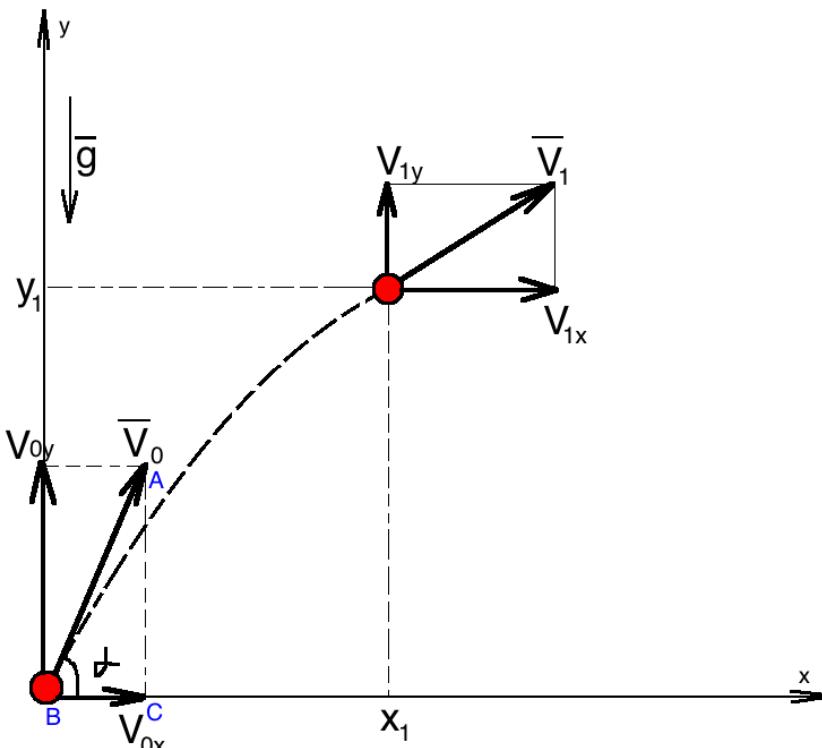


Answer on Question #45287 – Physics - Mechanics | Kinematics | Dynamics

a batter hits a ball so that it lifts the bat at speed of  $30 \text{ m/s}$  at angle  $53.1^\circ$  degree. find the position and velocity of ball at  $T=2 \text{ sec}$

**Solution:**

$V_0 = 30 \frac{\text{m}}{\text{s}}$  – initial velocity of the ball;


$\alpha = 53.1^\circ$  – angle of projection;

$T = 2 \text{ s}$  – travelling time;

$V_1$  – final velocity of the ball;

$x_1$  – final horizontal position of the ball;

$y_1$  – final vertical position of the ball;



From the right triangle ABC:

$$V_{x0} = V_0 \cdot \cos \alpha; V_{y0} = V_0 \cdot \sin \alpha;$$

Equation of motion of the ball along the X-axis:

$$x_1 = V_{x0} T \cos \alpha = 30 \frac{\text{m}}{\text{s}} \cdot 2 \text{ s} \cdot \cos 53.1^\circ = 36 \text{ m}$$

Equations of motion along the Y-axis:

$$y_1 = V_{y0} T - \frac{g T^2}{2} = 30 \frac{\text{m}}{\text{s}} \cdot 2 \text{ s} \cdot \sin 53.1^\circ - 9.8 \frac{\text{m}}{\text{s}^2} \cdot \frac{1}{2} \cdot (2 \text{ s})^2 = 28.4 \text{ m}$$

Rate equation for the horizontal component of the final velocity:

$$V_{1y} = V_{y0} - gT = V_0 \cdot \sin \alpha - gT = 30 \frac{\text{m}}{\text{s}} \cdot \sin 53.1^\circ - 9.8 \frac{\text{m}}{\text{s}^2} \cdot 2 \text{ s} = 4.4 \frac{\text{m}}{\text{s}}$$

$V_{1x} = V_{0x}$ , because horizontal acceleration is zero.

The final velocity of the ball by the Pythagorean theorem:

$$V_1 = \sqrt{V_{1x}^2 + V_{1y}^2} = \sqrt{\left(4.4 \frac{\text{m}}{\text{s}}\right)^2 + \left(30 \frac{\text{m}}{\text{s}} \cdot \cos 53.1^\circ\right)^2} = 18.5 \frac{\text{m}}{\text{s}}$$

**Answer:** position of the ball: horizontal: 36 m, vertical : 28.4 m; final velocity:

$18.5 \frac{\text{m}}{\text{s}}$ .