Answer on Question \#45266, Physics, Mechanics | Kinematics | Dynamics

Question:

A particle of mass m moves with constant speed v on a circular path of radius r. Find magnitude of average force on it in half revolution.

Answer:

From Newton's second law, force is related to momentum p by:

$$
F=\frac{\Delta p}{\Delta t}
$$

where Δt is time, Δp is change of momentum, F is average force.
Change of momentum in half revolution equals:

$$
\Delta p=2 m v
$$

And time of the half revolution equals:

$$
\Delta t=\frac{\pi r}{v}
$$

Therefore:

$$
F=\frac{2 m v}{\frac{\pi r}{v}}=\frac{2}{\pi} \frac{m v^{2}}{r}
$$

Answer: $\frac{2}{\pi} \frac{m v^{2}}{r}$

