Answer on Question \#45189, Physics, Mechanics | Kinematics | Dynamics

A person travels along straight road for first $t / 3$ time with speed $V 1$ and for next $2 t / 3$ time with speed V2. Then average velocity(V) of person was
(1) $V=V 1+2 V 2 / 3$
(2) $1 / v=1 / 3 \mathrm{~V} 1+2 / 3 \mathrm{~V} 2$
(3) $V=1 / 3^{*}$ square root (2V1V2)
(4) $\mathrm{V}=$ square $\operatorname{root}(3 \mathrm{~V} 2 / 2 \mathrm{~V} 1)$

Solution.

The average velocity is determined by the formula:

$$
V_{\text {average }}=\frac{S}{t}
$$

Where S is a full distance covered by person and t is a full time of trip.

$$
S=S_{1}+S_{2}=V_{1} \cdot \frac{t}{3}+V_{2} \cdot \frac{2 t}{3}
$$

So:
$V_{\text {average }}=\frac{V_{1} \cdot \frac{t}{3}+V_{2} \cdot \frac{2 t}{3}}{t}=\frac{V_{1}}{3}+\frac{2 V_{2}}{3}=\frac{V_{1}+2 V_{2}}{3}$
Answer: looks like the answer (1) is right but there is no brackets:
$\mathrm{V}=(\mathrm{V} 1+2 \mathrm{~V} 2) / 3$ is correct.

Other items are completely wrong.

