## Answer on Question \#45187, Physics, Mechanics | Kinematics | Dynamics

A ball is dropped from bridge of 122.5 m above river. After the ball has been falling for 2 seconds ,a second ball is thrown straight down after it. Initial velocity of second ball ao that both hit the water at same time.
(1) $49 \mathrm{~m} / \mathrm{sec}$
(2) $55.5 \mathrm{~m} / \mathrm{sec}$
(3) $26.1 \mathrm{~m} / \mathrm{sec}$
(4) $9.8 \mathrm{~m} / \mathrm{sec}$

## Solution



Let $t_{1}$ be the time of flight of the first ball and $t_{2}$ for the second one.

Then
$t_{1}=t_{2}+\Delta t \rightarrow t_{2}=t_{1}-\Delta t$
Where $\Delta t=2 \mathrm{~s}$. Equations of motion for the both balls:

$$
\begin{aligned}
& h=\frac{g t_{1}^{2}}{2} \rightarrow t_{1}=\sqrt{\frac{2 h}{g}} \\
& h=V_{02} t_{2}+\frac{g t_{2}^{2}}{2}=V_{02} t_{2}+\frac{g t_{2}^{2}}{2}=V_{02}\left(t_{1}-\Delta t\right)+\frac{g\left(t_{1}-\Delta t\right)^{2}}{2} \\
& \\
& =V_{02}\left(\sqrt{\frac{2 h}{g}}-\Delta t\right)+\frac{g\left(\sqrt{\frac{2 h}{g}}-\Delta t\right)^{2}}{2}
\end{aligned}
$$

So:
$V_{02}=\frac{h-\frac{g\left(\sqrt{\frac{2 h}{g}}-\Delta t\right)^{2}}{2}}{\sqrt{\frac{2 h}{g}}-\Delta t}=\frac{h}{\sqrt{\frac{2 h}{g}}-\Delta t}--\frac{g\left(\sqrt{\frac{2 h}{g}}-\Delta t\right)}{2}$
Numerically:
$V_{02}=\frac{122.5 \mathrm{~m}}{\sqrt{\frac{2 \cdot 122.5 m}{9.8 \frac{m}{s^{2}}}}-2 \mathrm{~s}}-\frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot\left(\sqrt{\frac{2 \cdot 122.5 \mathrm{~m}}{9.8 \frac{m}{\mathrm{~s}^{2}}}}-2 \mathrm{~s}\right)}{2} \approx 26.1 \frac{\mathrm{~m}}{\mathrm{~s}}$
Answer: (3) $26.1 \mathrm{~m} / \mathrm{sec}$
http://www.AssignmentExpert.com/

