Answer on Question \#45186, Physics, Other

A body is thrown vertically upwards and takes 5 seconds to reach maximum height. The distance travelled by the body will be same in
(1) 1 st $\& 10$ th sec
(2) $2 \mathrm{nd} \& 8$ th sec
(3) 4th \& 6th sec
(4) Both (2) \&(3)

Solution.

Let's calculate distances travelled by the body in n-th second.
$S_{n}=V_{n-1} \Delta t-\frac{g \Delta t^{2}}{2}$
Let's find V_{0} - the initial velocity of the body:
$0=V_{0}-g \cdot 5 \Delta t \rightarrow V_{0}=5 g \Delta t$
Where $\mathrm{V}_{\mathrm{n}-1}$ is a projections of body's velocity on the vertical axis upwards, $\Delta t=1 \mathrm{~s}$.

$$
V_{n-1}=V_{0}-g t_{n-1}=V_{0}-g(n-1) \Delta t
$$

Where ($n-1$) is a number of seconds passed before beginning of n-th second. So:

$$
\begin{gathered}
S_{n}=\left(V_{0}-g(n-1) \Delta t\right) \Delta t-\frac{g \Delta t^{2}}{2}=V_{0} \Delta t-n g \Delta t^{2}+\frac{g \Delta t^{2}}{2} \\
=5 g \Delta t^{2}-n g \Delta t^{2}+\frac{g \Delta t^{2}}{2}
\end{gathered}
$$

Let Δt be 1 :

$$
S_{n}=5 g-n g+\frac{g}{2}=\frac{11 g}{2}-n g
$$

Here the dimension of g is meters.
So distances traveled by the body are:

n	Sn
1	$9 / 2 \mathrm{~g}$
2	$7 / 2 \mathrm{~g}$
3	$5 / 2 \mathrm{~g}$
4	$3 / 2 \mathrm{~g}$
5	$1 / 2 \mathrm{~g}$
6	$-1 / 2 \mathrm{~g}$
7	$-3 / 2 \mathrm{~g}$
8	$-5 / 2 \mathrm{~g}$
9	$-7 / 2 \mathrm{~g}$
10	$-9 / 2 \mathrm{~g}$

As we can see, from proposed answers only first is right: absolute amount of distances travelled in 1st \&10 th seconds are equal.

Answer: (1) 1st \&10 th sec
http://www.AssignmentExpert.com/

