Answer on Question \#45172, Physics, Mechanics | Kinematics | Dynamics

Sally travels by car from one city to another. She drives for 29.0 min at $79.0 \mathrm{~km} / \mathrm{h}, 31.0 \mathrm{~min}$ at $33.0 \mathrm{~km} / \mathrm{h}$, and 15.0 min at $26.0 \mathrm{~km} / \mathrm{h}$, and she spends 6.0 min eating lunch and buying gas. Determine the average speed for the trip.

Solution:

The average speed during the course of a motion is often computed using the following formula:

$$
\begin{gathered}
\text { erage Speed }=\frac{\text { Distance Traveled }}{\text { Time of Travel }} \\
v_{a v}=\frac{d_{1}+d_{2}+d_{3}+d_{4}}{t_{1}+t_{2}+t_{3}+t_{4}}
\end{gathered}
$$

$$
\begin{aligned}
& v_{1}=79 \mathrm{~km} / \mathrm{h} \\
& v_{2}=33 \mathrm{~km} / \mathrm{h} \\
& v_{3}=26 \mathrm{~km} / \mathrm{h} \\
& v_{4}=0 \mathrm{~km} / \mathrm{h} \\
& t_{1}=29 \mathrm{~min}=\frac{29}{60} \text { hour }=0.483 \text { hour } \\
& t_{2}=31 \mathrm{~min}=\frac{31}{60} \text { hour }=0.517 \text { hour } \\
& t_{3}=15 \mathrm{~min}=\frac{15}{60} \text { hour }=0.25 \text { hour } \\
& t_{4}=6 \min =\frac{6}{60} \text { hour }=0.1 \text { hour }
\end{aligned}
$$

The distance is

$$
d=v t
$$

Thus,

$$
\begin{gathered}
d_{1}=79 \cdot 0.483=38.157 \mathrm{~km} \\
d_{2}=33 \cdot 0.517=17.061 \mathrm{~km} \\
d_{3}=26 \cdot 0.25=6.5 \mathrm{~km} \\
d_{4}=0
\end{gathered}
$$

The average speed

$$
v_{a v}=\frac{38.157+17.061+6.5+0}{0.483+0.517+0.25+0.1}=45.7 \mathrm{~km} / \mathrm{h}
$$

Answer: $\quad v_{a v}=45.7 \mathrm{~km} / \mathrm{h}$.

