

Answer on Question#45033, Physics, Other

Let us use 2nd Newtons law to solve the problem. Because block lays on the surface, normal force is equal to gravitational force: $N=mg$. The friction force is $F_f=\mu N=\mu mg$, where μ is the coefficient of friction. Thus, horizontal component of the net force acting on a block is

$F=F_0-F_f=F_0-\mu mg$, where F_0 is the constant force. According to 2nd Newtons law,

$$a=\frac{F}{m}=\frac{F_0}{m}-\mu g.$$

Given $F_0=300\text{ N}$, $m=50\text{ kg}$, $\mu=0.5$, obtain $a=1.095\frac{m}{s^2}$ - this is the acceleration of the block.