Answer on Question \#45009 - Physics - Molecular Physics|Thermodynamics

Question.

Find the initial temperature in K of a gas if the final temperature is 500 degrees Celsius and is expanded adiabatically by a pressure ration of 11:1 the adiabatic index is 1.38 .
$T_{2}=500^{\circ} \mathrm{C}=773 \mathrm{~K}$
$\frac{P_{1}}{P_{2}}=\frac{11}{1}=11$
$\gamma=1.38$
$T_{1}=$?

Solution.

The adiabatic equation:

$$
P V^{\gamma}=\mathrm{const}
$$

But from the equation of ideal gas we know

$$
P V=R T \rightarrow \frac{P V}{T}=R=\text { const } \rightarrow V=\frac{\text { const }}{P} T
$$

Therefore,

$$
P^{1-\gamma} T^{\gamma}=\text { const }
$$

In our case,

$$
P_{1}^{1-\gamma} T_{1}^{\gamma}=P_{2}^{1-\gamma} T_{2}^{\gamma}=\mathrm{const} \rightarrow\left(\frac{T_{1}}{T_{2}}\right)^{\gamma}=\left(\frac{P_{2}}{P_{1}}\right)^{1-\gamma}
$$

So,

$$
T_{1}=T_{2}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{\gamma-1}{\gamma}}
$$

Calculate:

$$
T_{1}=773 \cdot 11^{0.275}=773 \cdot 1.934=1495 \mathrm{~K}
$$

Answer.

$T_{1}=T_{2}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{\gamma-1}{\gamma}}=1495 \mathrm{~K}$
http://www.AssignmentExpert.com/

