Answer on Question \#45008 - Physics - Molecular Physics|Thermodynamics

Question.

A containers volume is reduced by 75% And the gas inside had an initial temperature of 10 degrees Celsius. What is the final temperature in degrees Celsius if it compressed polytropically with $n=1.45$
$V_{2}=0.25 V_{1}$
$T_{1}=10^{\circ} \mathrm{C}=283 \mathrm{~K}$
$n=1.45$
$T_{2}=$?

Solution.

The polytropic equation:

$$
P V^{n}=\text { const }
$$

But from the equation of ideal gas we know

$$
P V=R T \rightarrow \frac{P V}{T}=R=\text { const } \rightarrow P=\frac{\text { const }}{V} T
$$

Therefore,

$$
T V^{n-1}=\text { const }
$$

In our case,

$$
T_{1} V_{1}^{n-1}=T_{2} V_{2}^{n-1}=\text { const } \rightarrow T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{n-1}
$$

Calculate:

$$
T_{2}=283 \cdot 4^{0.45}=283 \cdot 1.866=528.1 \mathrm{~K}=255.1^{\circ} \mathrm{C}
$$

Answer.

$T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{n-1}=528.1 \mathrm{~K}=255.1^{\circ} \mathrm{C}$

