Answer on Question \# 44772, Physics, Electric Circuits

Task: Vsteady $=\left[1 /\left(C^{2} R^{2} \omega^{2}\right)+1\right] \sin \omega t+\left[C R \omega /\left(C^{2} R^{2} \omega^{2}\right)+1\right] \cos \omega t$
In steady state, show that the amplitude of the output voltage?
explain if this circuit is a high-pass or low-pass filter?

Solution:

- If the output voltage is given by

$$
V_{\text {out }}(t)=B \sin (\omega t), \text { let } B=1 ;
$$

- Then, since the output voltage is across a capacitor, we can compute the current flowing through R and C as:

$$
i(t)=C d v_{o u t} / d t=C \omega \cos (\omega t)
$$

- And then we can compute the voltage across the resistor, R, as :

$$
v_{R}(t)=R i(t)=R C \omega \cos (\omega t)
$$

Now, we can apply KVL to get the input voltage.

- The input voltage is given by,

$$
v_{\text {in }}(t)=v_{R}(t)+v_{\text {out }}(t)
$$

- Or:

$$
v_{\text {in }}(t)=(R C \omega \cos (\omega t)+\sin (\omega t))
$$

It may not be obvious, but we can take advantage of a trigonometric identity,

$$
\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)
$$

if only we can make the things that multiply the sines and cosines in the second bullet above look like other sines and cosines.

- We know:

$$
\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)
$$

- And, we know:

$$
v_{\text {in }}(t)=(R C w \cos (w t)+\sin (w t))
$$

- And the second expression can be put into the form of the first

We need to refer to a little geometrical construction - at the right. "Clearly" we have the relationships indicated below for $\cos (\mathbf{f})$ and $\sin (\mathbf{f})$

$$
\begin{aligned}
& \sin (\phi)=\frac{(\omega \cdot \mathrm{R} \cdot \mathrm{C})}{\sqrt{1+(\omega \cdot \mathrm{R} \cdot \mathrm{C})^{2}}} \\
& \cos (\phi)=\frac{1}{\sqrt{1+(\omega \cdot \mathrm{R} \cdot \mathrm{C})^{2}}}
\end{aligned}
$$

So, now we can write: Vsteady $=\left[1 /\left(C^{2} R^{2} \omega^{2}\right)+1\right] \sin \omega t+\left[C R \omega /\left(C^{2} R^{2} \omega^{2}\right)+1\right] \cos \omega t$.
In a low-pass filter, if the output is taken across the capacitor, and the low frequency components appear across the capacitor, it's a low-pass filter.

