Answer on Question #44761 - Physics - Mechanics | Kinematics | Dynamics

a boy standing on the top of a tower of height 54 ft. throws a packet with a speed of 20 ft/s directly aiming towards his friend standing on the ground at a distance of 72 ft from the foot of the tower. the packet falls short of the person on the ground by x*16/3 ft. the value of x is

Solution:

h = 54 ft. —height of the tower;

 $V = 20 \frac{\text{ft}}{\text{s}} - \text{initial velocity of the packet;}$ d = 72 ft. - distance from the tower to friend;

 $s = X \cdot \frac{16}{3}$ – distance from packet to friend;

 α – angle between vertical and direction of the motion;

Components of the velocity along X-axis and Y-axis:

$$V_x = V \cos \alpha$$
; $V_v = V \sin \alpha$;

From the right triangle:

$$\sin \alpha = \frac{d}{AB} = \frac{d}{\sqrt{d^2 + h^2}} = \frac{72 \text{ ft}}{\sqrt{(72 \text{ ft})^2 + (54 \text{ ft.})^2}} = \frac{4}{5}$$

$$\cos \alpha = \frac{h}{AB} = \frac{h}{\sqrt{d^2 + h^2}} = \frac{54 \text{ ft}}{\sqrt{(72 \text{ ft})^2 + (54 \text{ ft.})^2}} = \frac{3}{5}$$
$$\tan \alpha = \frac{d}{h} = \frac{72 \text{ ft.}}{54 \text{ ft.}} = \frac{4}{3}$$

Equation of motion of the particle along X-axis:

$$x: s = V_x t = Vt \sin \alpha$$
$$t = \frac{s}{V \sin \alpha} \quad (1)$$

Equation of motion of the particle along Y-axis (g = $32\frac{ft}{s^2}$):

y: h = Vt cos
$$\alpha + \frac{gt^2}{2}$$
 (2)
(1)in(2):
h = V $\frac{s}{V \sin \alpha} \cos \alpha + \frac{g(\frac{s}{V \sin \alpha})^2}{2}$
h = s tan $\alpha + \frac{gs^2}{2V^2 \sin^2 \alpha}$
54 = $\frac{4}{3} \cdot \frac{16}{3}X + \frac{32\frac{ft}{s^2} \cdot \left(\frac{16}{3}X\right)^2}{2 \cdot \left(20\frac{ft}{s}\right)^2 \cdot \left(\frac{4}{5}\right)^2}$
54 = $\frac{16}{9}X(X + 4)$
 $\frac{16}{9}X^2 + \frac{64}{9}X - 54 = 0$

Solutions of the quadratic equation:

$$X_1 = \frac{1}{4} (-8 - 5\sqrt{22}) \approx -7.86$$

 $X_2 = \frac{1}{4} (5\sqrt{22} - 8) \approx 3.86$

We need only positive root, hence X = 3.86.

Answer: The value X is 3.86