Answer on Question \#44761 - Physics - Mechanics | Kinematics | Dynamics

a boy standing on the top of a tower of height 54 ft . throws a packet with a speed of $20 \mathrm{ft} / \mathrm{s}$ directly aiming towards his friend standing on the ground at a distance of 72 ft from the foot of the tower. the packet falls short of the person on the ground by $x^{*} 16 / 3 \mathrm{ft}$. the value of x is

Solution:

$\mathrm{h}=54 \mathrm{ft}$. -height of the tower;
$\mathrm{V}=20 \frac{\mathrm{ft}}{\mathrm{s}}$ - initial velocity of the packet;
$\mathrm{d}=72 \mathrm{ft}$.-distance from the tower to friend;
$s=X \cdot \frac{16}{3}-$ distance from packet to friend;
α - angle between vertical and direction of the motion;
Components of the velocity along X -axis and Y -axis:

$$
\mathrm{V}_{\mathrm{x}}=\mathrm{V} \cos \alpha ; \mathrm{V}_{\mathrm{y}}=\mathrm{V} \sin \alpha ;
$$

From the right triangle:

$$
\sin \alpha=\frac{\mathrm{d}}{\mathrm{AB}}=\frac{\mathrm{d}}{\sqrt{\mathrm{~d}^{2}+\mathrm{h}^{2}}}=\frac{72 \mathrm{ft}}{\sqrt{(72 \mathrm{ft})^{2}+(54 \mathrm{ft})^{2}}}=\frac{4}{5}
$$

$$
\begin{aligned}
\cos \alpha=\frac{\mathrm{h}}{\mathrm{AB}}= & \frac{\mathrm{h}}{\sqrt{\mathrm{~d}^{2}+\mathrm{h}^{2}}}=\frac{54 \mathrm{ft}}{\sqrt{(72 \mathrm{ft})^{2}+(54 \mathrm{ft.})^{2}}}=\frac{3}{5} \\
& \tan \alpha=\frac{\mathrm{d}}{\mathrm{~h}}=\frac{72 \mathrm{ft} .}{54 \mathrm{ft} .}=\frac{4}{3}
\end{aligned}
$$

Equation of motion of the particle along X -axis:

$$
\begin{align*}
\mathrm{x}: \mathrm{s} & =\mathrm{V}_{\mathrm{x}} \mathrm{t}=\mathrm{Vt} \sin \alpha \\
\mathrm{t} & =\frac{\mathrm{S}}{\mathrm{~V} \sin \alpha} \tag{1}
\end{align*}
$$

Equation of motion of the particle along Y -axis ($\mathrm{g}=32 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$):

$$
\begin{align*}
& y: h=V t \cos \alpha+\frac{g t^{2}}{2} \tag{2}\\
& \text { (1)in(2): } \\
& \mathrm{h}=\mathrm{V} \frac{\mathrm{~s}}{\mathrm{~V} \sin \alpha} \cos \alpha+\frac{\mathrm{g}\left(\frac{\mathrm{~s}}{\mathrm{~V} \sin \alpha}\right)^{2}}{2} \\
& \mathrm{~h}=\mathrm{s} \tan \alpha+\frac{\mathrm{gs}^{2}}{2 \mathrm{~V}^{2} \sin ^{2} \alpha} \\
& 54=\frac{4}{3} \cdot \frac{16}{3} \mathrm{X}+\frac{32 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \cdot\left(\frac{16}{3} \mathrm{x}\right)^{2}}{2 \cdot\left(20 \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \cdot\left(\frac{4}{5}\right)^{2}} \\
& 54=\frac{16}{9} X(X+4) \\
& \frac{16}{9} X^{2}+\frac{64}{9} X-54=0
\end{align*}
$$

Solutions of the quadratic equation:

$$
\begin{gathered}
X_{1}=\frac{1}{4}(-8-5 \sqrt{22}) \approx-7.86 \\
X_{2}=\frac{1}{4}(5 \sqrt{22}-8) \approx 3.86
\end{gathered}
$$

We need only positive root, hence $X=3.86$.
Answer: The value X is 3.86

