


### Answer on Question #44692-Physics-Electromagnetism

A long solenoid of turn density 'n' carries a current 'I'. The magnetic field at a point which is at a axial distance  $R$  from one end of solenoid? Radius is also  $R$

#### Solution



$$\text{Number of turns per unit length: } n = \frac{N}{L}$$

Current circulating in ring of width  $dx'$ :  $nIdx'$ .

Magnetic field on axis of ring:

$$dB_x = \frac{\mu_0(nIdx')}{2} \frac{R^2}{[(x - x')^2 + R^2]^{\frac{3}{2}}}.$$

Magnetic field on axis of solenoid:

$$B_x = \frac{\mu_0(nI)R^2}{2} \int_{x_1}^{x_2} \frac{dx'}{[(x - x')^2 + R^2]^{\frac{3}{2}}} = \frac{\mu_0(nI)}{2} \left[ \frac{x - x_1}{\sqrt{(x - x_1)^2 + R^2}} - \frac{x - x_2}{\sqrt{(x - x_2)^2 + R^2}} \right].$$

$$x - x_1 = L + R, x - x_2 = R.$$

As solenoid is long ( $L \gg R$ )

$$\frac{L + R}{\sqrt{(L + R)^2 + R^2}} \rightarrow \frac{L + R}{\sqrt{(L + R)^2}} = 1.$$

That's why

$$B = \frac{\mu_0(nI)}{2} \left[ 1 - \frac{R}{\sqrt{(R)^2 + R^2}} \right] = \frac{\mu_0(nI)}{2} \left[ 1 - \frac{1}{\sqrt{2}} \right].$$

$$\text{Answer: } \frac{\mu_0(nI)}{2} \left[ 1 - \frac{1}{\sqrt{2}} \right].$$