Answer on Question \#44687 - Physics - Other

(a) Assume your heart uses 1.2 J of energy per heartbeat.?
(i) Write down a plausible number for the rate (i.e. number of times per second) at which your heart is beating now. [2]
(ii) What is the rate at which your heart uses energy per second (in J s-1
)?
[2]
(iii) If you live to be 90 years old, how many heartbeats would you have had ? [2]
(b) Your brain uses energy at a rate of $\sim 1.5 \times 106$ J per day.
(i) What is the rate at which which your brain uses energy per second ? [2]
(ii) Over the course of this exam, how much energy will your brain have used?

Seems easy enough,but just can't get it right.
Thank you ! :)

Solution:

$$
\mathrm{P}=1.2 \frac{\mathrm{~J}}{\text { heartbeat }}
$$

The average heart beat of an adult human is 72 beats per minute, i.e. 72 heart beats in 60 seconds.

> heartbeats in $60 \mathrm{sec} .=72$
> heartbeats in $1 \mathrm{sec} .=72 / 60$
> heartbeats in $1 \mathrm{sec} .=1.2$

Plausible number for the rate

$$
\mathrm{N}=1.2 \frac{\text { heartbeats }}{\mathrm{s}}
$$

Rate at which my heart uses energy per second:

$$
\mathrm{R}=\mathrm{P} \cdot \mathrm{~N}=1.2 \frac{\mathrm{~J}}{\text { heartbeat }} \cdot 1.2 \frac{\text { heartbeats }}{\mathrm{s}}=1.44 \frac{\mathrm{~J}}{\mathrm{~s}}
$$

Answer: Rate at which my heart uses energy per second is equal to $1.44 \frac{\mathrm{~J}}{\mathrm{~s}}$.

$$
\begin{aligned}
\mathrm{T}=90 \text { years } & =90 \cdot 365 \text { days }=90 \cdot 365 \cdot 24 \text { hour }=90 \cdot 365 \cdot 24 \cdot 60 \text { minutes } \\
& =90 \cdot 365 \cdot 24 \cdot 60 \cdot 60 \mathrm{~s}
\end{aligned}
$$

Number of heartbeats during 90 years:
$\mathrm{n}=\mathrm{T} \cdot \mathrm{N}=90 \cdot 365 \cdot 24 \cdot 60 \cdot 60 \mathrm{~s} \cdot 1.2 \frac{\text { heartbeats }}{\mathrm{s}}=3405888000$ heartbeats
Answer: number of heartbeats during 90 years is equal to 3405888000
\#3
Your brain uses energy at a rate of $\sim 1.5 \times 106 \mathrm{~J}$ per day.

$$
\begin{aligned}
P=1.5 \cdot 10^{6} \frac{\mathrm{~J}}{\text { day }} & =\frac{1.5 \cdot 10^{6} \mathrm{~J}}{24 \text { hours }}=\frac{1.5 \cdot 10^{6} \mathrm{~J}}{24 \cdot 60 \text { minutes }}=\frac{1.5 \cdot 10^{6} \mathrm{~J}}{24 \cdot 60 \text { minutes }}= \\
& =\frac{1.5 \cdot 10^{6} \mathrm{~J}}{24 \cdot 60 \cdot 60 \text { seconds }}=17.36 \frac{\mathrm{~J}}{\mathrm{~s}}
\end{aligned}
$$

$\mathrm{t}=1$ hour $=60 \mathrm{~min}=60 \cdot 60$ seconds - duration of the exam;
Over the course of this exam, your brain have used

$$
\mathrm{W}=t \cdot \mathrm{P}=17.36 \frac{\mathrm{~J}}{\mathrm{~s}} \cdot 60 \cdot 60 \mathrm{~s}=62496 \mathrm{~J}
$$

Answer: during the exam my brain have used 62496 J .

