Answer on Question \#44614, Physics, Mechanics | Kinematics | Dynamics

A cyclist starts from rest down a hill, of gradient 1 in 30 . The gearing allows a constant tractive force of 180 N . The resistance to motion is 30 N . The total mass of cycle and cyclist is 85 kg . Calculate the constant acceleration in $\mathrm{m} / \mathrm{s}^{2}$.

Solution:

Given:
$m=85 \mathrm{~kg}$,
$F=180 \mathrm{~N}$,
$F_{f r}=f=30 \mathrm{~N}$,
$a=$?

If the angle is expressed as a ratio (1 in n) then:

$$
\theta=\tan ^{-1}\left(\frac{1}{n}\right)
$$

Thus,

$$
\theta=\tan ^{-1}\left(\frac{1}{30}\right)=1.909^{\circ}
$$

The equation of motion is

$$
m a=F+m g \sin \theta-F_{f r}
$$

where g is the gravity acceleration constant $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$.
The acceleration is

$$
a=\frac{F}{m}+g \sin \theta-\frac{F_{f r}}{m}
$$

Thus,

$$
a=\frac{180}{85}+9.81 \cdot \sin 1.909^{\circ}-\frac{30}{85}=2.091=2.1 \mathrm{~m} / \mathrm{s}^{2}
$$

Answer. $a=2.1 \mathrm{~m} / \mathrm{s}^{2}$.

