Answer on Question \#44596 - Physics - Mechanics | Kinematics | Dynamics

A car of mass 120 kg is moving at $100 \mathrm{~m} / \mathrm{s}$. If it slows down to $40 \mathrm{~m} / \mathrm{s}$ in 50 seconds:
A. The impulse and force that are being provided by the breaking mechanism is when the mechanism is brought to a stop and then "throw it back." Impulses are greater when bouncing occurs.

Solution:

$\mathrm{m}=120 \mathrm{~kg}-$ mass of the car;
$\mathrm{v}_{1}=100 \frac{\mathrm{~m}}{\mathrm{~s}}-$ initial velocity of the car;
$\mathrm{v}_{2}=40 \frac{\mathrm{~m}}{\mathrm{~s}}$ - final velocity of the car;
$\mathrm{t}=50 \mathrm{~s}$ - deceleration time;
The impulse of force can be extracted and found to be equal to the change in momentum of an object provided the mass is constant:

$$
\text { Impulse } \begin{aligned}
=\mathrm{m} \Delta \mathrm{v} & =\mathrm{mv}_{2}-\mathrm{mv}_{1}=\mathrm{m}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)=120 \mathrm{~kg} \cdot\left(40 \frac{\mathrm{~m}}{\mathrm{~s}}-100 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \\
= & -7200 \mathrm{~N} \cdot \mathrm{~s}
\end{aligned}
$$

Formula for the impulse:
Impulse $=\mathrm{F} \cdot \mathrm{t}$

$$
\mathrm{F}=\frac{\text { Impulse }}{\mathrm{t}}=\frac{-7200 \mathrm{~N} \cdot \mathrm{~s}}{50 \mathrm{~s}}=-144 \mathrm{~N}
$$

We have a minus sign before force and impulse because the direction of force and impulse is opposite to the direction of motion (deceleration) of the car.

Answer: Impulse $=-7200 \mathrm{~N} \cdot \mathrm{~s} ; \mathrm{F}=-144 \mathrm{~N}$.

