Answer on Question \#44567, Physics, Mechanics | Kinematics |

Dynamics

Question:

A bus of mass 7.5 tonnes has a velocity of $72 \mathrm{~km} / \mathrm{h}$ when the brakes are applied. The force of the braking system can be considered to be a constant 25 kN and is applied for 40 m . Determine the final velocity of the lorry in m / s.

Answer:

The law of conservation of energy:

$$
\Delta E=W
$$

where ΔE - change of body's energy, W - work of all forces acting on the body Work can be expressed by the following equation:

$$
W=F d \cos \theta
$$

where F is the force, d is the displacement, and the angle θ is defined as the angle between the force and the displacement vector.

Work of brakes equals:

$$
W=F \cdot d \cos 180^{\circ}=-F d
$$

Change of body's kinetic energy equals:

$$
\Delta E=\frac{m v^{2}}{2}-\frac{m v_{0}^{2}}{2}
$$

where v is final velocity, v_{0} is initial.
Therefore:

$$
\begin{gathered}
\frac{m v^{2}}{2}-\frac{m v_{0}^{2}}{2}=-F d \\
v=\sqrt{v_{0}^{2}-\frac{2 F d}{m}}=\sqrt{\left(\frac{72}{3.6} \frac{m}{s}\right)^{2}-\frac{2 \cdot 25 \mathrm{kN} \cdot 40 \mathrm{~m}}{7500 \mathrm{~kg}}} \cong 12 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: $12 \frac{\mathrm{~m}}{\mathrm{~s}}$

