Answer on Question \#44566 - Physics - Acoustics

Question.

On a vehicle crash simulation, a car of mass 1200 kg is travelling at a velocity of 40 mph in the easterly direction when it is hit by a truck of mass 3300 kg travelling at a velocity of 25 mph from the westerly direction. Assuming that the two vehicles become entangled calculate in m / s their combined velocity after the crash.

Take $1.61 \mathrm{~km} / \mathrm{hr}=1 \mathrm{mph}$
$1 \mathrm{mph}=1.61 \frac{\mathrm{~km}}{\mathrm{hr}}=0.447 \frac{\mathrm{~m}}{\mathrm{~s}}$
Given:

$$
\begin{aligned}
& m_{1}=1200 \mathrm{~kg} \\
& v_{1}=40 \mathrm{mph} \\
& m_{2}=3300 \mathrm{~kg} \\
& v_{2}=25 \mathrm{mph}
\end{aligned}
$$

Find:
$v=?$

Solution.

Let use the law of conservation of momentum for this inelastic collision. Therefore,

$$
m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v
$$

So,

$$
v=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}
$$

Calculate:

$$
v=\frac{1200 \cdot 40+3300 \cdot 25}{1200+3300}=\frac{48000+82500}{4500}=29 \mathrm{mph}=13 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

If we will use the law of conservation of energy, we will receive the same answer:

$$
\frac{m_{1} v_{1}^{2}}{2}+\frac{m_{2} v_{2}^{2}}{2}=\frac{\left(m_{1}+m_{2}\right) v^{2}}{2}
$$

$$
v=\sqrt{\frac{m_{1} v_{1}^{2}+m_{2} v_{2}^{2}}{m_{1}+m_{2}}}
$$

Calculate:

$$
v=\sqrt{\frac{1200 \cdot 40^{2}+3300 \cdot 25^{2}}{1200+3300}}=29 \mathrm{mph}=13 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer.

$v=13 \frac{\mathrm{~m}}{\mathrm{~s}}$
http://www.AssignmentExpert.com/

