

Answer on Question #44566 – Physics – Acoustics

Question.

On a vehicle crash simulation, a car of mass 1200 kg is travelling at a velocity of 40 mph in the easterly direction when it is hit by a truck of mass 3300 kg travelling at a velocity of 25 mph from the westerly direction. Assuming that the two vehicles become entangled calculate in m/s their combined velocity after the crash.

Take $1.61 \text{ km/hr} = 1 \text{ mph}$

$$1 \text{ mph} = 1.61 \frac{\text{km}}{\text{hr}} = 0.447 \frac{\text{m}}{\text{s}}$$

Given:

$$m_1 = 1200 \text{ kg}$$

$$v_1 = 40 \text{ mph}$$

$$m_2 = 3300 \text{ kg}$$

$$v_2 = 25 \text{ mph}$$

Find:

$$v = ?$$

Solution.

Let use the law of conservation of momentum for this inelastic collision. Therefore,

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2) v$$

So,

$$v = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

Calculate:

$$v = \frac{1200 \cdot 40 + 3300 \cdot 25}{1200 + 3300} = \frac{48000 + 82500}{4500} = 29 \text{ mph} = 13 \frac{\text{m}}{\text{s}}$$

If we will use the law of conservation of energy, we will receive the same answer:

$$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{(m_1 + m_2) v^2}{2}$$

$$v = \sqrt{\frac{m_1 v_1^2 + m_2 v_2^2}{m_1 + m_2}}$$

Calculate:

$$v = \sqrt{\frac{1200 \cdot 40^2 + 3300 \cdot 25^2}{1200 + 3300}} = 29 \text{ mph} = 13 \frac{\text{m}}{\text{s}}$$

Answer.

$$v = 13 \frac{\text{m}}{\text{s}}$$