Answer on Question \#44517, Physics, Mechanics | Kinematics |

 Dynamics
Question:

A drinking fountain shoots water out from a height of 3.5 cm above its basin. The water follows a parabolic arc which extends 15 cm horizontally before hitting the basin. The arc reaches a maximum height of 11 cm above the basin. Determine:
a) The time a single drop spends in the air.
b) The initial speed of the water.
c) The angle at which it was shot out of the fountain.

Answer:

a) Vertical coordinate of water drop equals:

$$
y=h_{0}+v_{y} t-\frac{g t^{2}}{2}
$$

Maximum height from law of conservation of energy:

$$
h-h_{0}=\frac{v_{y}^{2}}{2 g}
$$

Therefore:

$$
v_{y}=\sqrt{2 g\left(h-h_{0}\right)}=1.21 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Now substitute v_{y} into equation for y. Drop in air when $y>0$. Getting quadratic equation:

$$
0.035+1.21 t-\frac{9.8 t^{2}}{2}=0
$$

with one solution >0 :

$$
t=0.273 \mathrm{~s}
$$

b) Horizontal coordinate of water drop equals:

$$
x=v_{x} t
$$

Therefore:

$$
v_{x}=\frac{x}{t}=0.549 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The initial speed of the water equals:

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=1.33 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

c) The tangent of angle at which drop was shot out of the fountain equals:

$$
\tan \alpha=\frac{v_{x}}{v_{y}}
$$

Therefore angle equals:

$$
\alpha=\arctan 0.452=24.3^{\circ}
$$

