Answer on Question \#44502, Physics, Other

A 12 g bullet is accelerated from rest to speed of $700 \mathrm{~m} / \mathrm{s}$ as it travels 20 cm in a gun barrel. Assuming acceleration to be constant, how large was the accelerating force?

Solution:

Given:
$m=12 \cdot 10^{-3} \mathrm{~kg}$,
$v_{0}=0$,
$v=700 \mathrm{~m} / \mathrm{s}$,
$d=0.2 \mathrm{~m}$,
$F=$?

Newton's Second Law

$$
F=m a
$$

Kinematics equation

$$
2 a d=v^{2}-v_{0}^{2}
$$

where a is acceleration, d is distance, v_{0} is initial velocity and v is final velocity.
Thus,

$$
a=\frac{v^{2}-v_{0}^{2}}{2 d}
$$

So,

$$
F=m \frac{v^{2}-v_{0}^{2}}{2 d}
$$

Substituting,

$$
F=12 \cdot 10^{-3} \frac{700^{2}-0^{2}}{2 \cdot 0.2}=14700 \mathrm{~N}
$$

Answer: $\quad F=14700$ N.

