

Answer on Question #44448 – Physics – Other

Question.

Two cars A and B have a velocity of 60mph in the same direction. A is 250ft behind B when the brake is applied to car B causing it to decelerate at the constant rate of 10ft/s². In what time A overtakes B and how far will each other have traveled?

Given:

$$v_0 = 60 \text{ mph} = 88 \frac{\text{ft}}{\text{s}}$$

$$l_0 = 250 \text{ ft}$$

$$a = -10 \frac{\text{ft}}{\text{s}^2}$$

Find:

$$t = ?$$

$$l_A = ? \quad l_B = ?$$

Solution.

$$l_A = l_0 + l_B$$

$$l_A = v_0 t$$

$$l_B = v_0 t + \frac{at^2}{2}$$

Therefore,

$$v_0 t = l_0 + v_0 t + \frac{at^2}{2}$$

$$l_0 = -\frac{at^2}{2} \rightarrow t = \sqrt{\frac{-2l_0}{a}}$$

Calculate:

$$t = \sqrt{\frac{-2 \cdot 250}{-10}} = \sqrt{2 \cdot 25} = 5\sqrt{2} \text{ s} = 7.07 \text{ s}$$

Let define l_A and l_B :

$$l_A = v_0 t = 88 \cdot 7.07 = 622 \text{ ft}$$

$$l_B = v_0 t + \frac{at^2}{2} = 622 - \frac{10 \cdot 50}{2} = 622 - 250 = 372 \text{ ft}$$

Answer.

$$t = \sqrt{\frac{-2l_0}{a}} = 7.07 \text{ s}$$

$$l_A = v_0 t = 622 \text{ ft}$$

$$l_B = v_0 t + \frac{at^2}{2} = 372 \text{ ft}$$

<http://www.AssignmentExpert.com/>