Answer on Question \#44393 - Physics - Mechanics | Kinematics | Dynamics

Question.

An astronomical object has its mass 4 times the mass of earth and radius half of the radius of earth. If acceleration due to gravity at earth is g , find its value at the surface of the astronomical object.
$M=4 M_{E}$
$R=0.5 R_{E}$
$a_{E}=g$
$a=$?

Solution.

As we know from the gravitational law:

$$
a=G \frac{M}{R^{2}}, \text { where }
$$

a is the acceleration at the surface of the astronomical object;
G is the gravitational constant;
M is the mass of the object;
R is the radius of the object.

For Earth we have the following:

$$
g=G \frac{M_{E}}{R_{E}^{2}}
$$

Therefore,

$$
a=G \frac{M}{R^{2}}=a=G \frac{4 M_{E}}{\left(0.5 R_{E}\right)^{2}}=16 G \frac{M_{E}}{R_{E}{ }^{2}}=16 \mathrm{~g}
$$

Answer.

$a=16 g$

