Answer on Question \#44333, Physics, Mechanics | Kinematics | Dynamics

A body dropped from the top of the tower clears 9/25th of the total height in its last second of flight. The height of the tower is ? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ and the answer is 122.5 .

Solution:

An object in free fall experiences an acceleration g of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. (The - sign indicates a downward acceleration.)

The kinetic equation is

$$
y=y_{0}+v_{o} t+\frac{1}{2} a t^{2}
$$

where
$y_{0}=h=$? is initial position
$v_{0}=0 \mathrm{~m} / \mathrm{s}$ is initial speed
$a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is acceleration
At time t the position of a ball is $y=0$,
and at time $t-1 s$ the position of a ball is $y=\left(1-\frac{9}{25}\right) h=\frac{16}{25} h$
Thus,

$$
\frac{9}{25} h=v_{o 1} t+\frac{1}{2} g t^{2}
$$

where $t=1$ second. We need to find $v_{o 1}$, the initial speed as the body enters that last 9/25 of h the height of the tower.

And,

$$
v_{o 1}=\sqrt{2 g \frac{16}{25} h}
$$

assuming the drop means no initial speed at the top. Note $16 / 25$ h is the height the body dropped up to the last second.

So,

$$
\begin{gathered}
\frac{9}{25} h-\sqrt{2 g \frac{16}{25} h}-\frac{1}{2} g=0 \\
\frac{9}{25} h-\frac{4}{5} \sqrt{2 g h}-4.9=0
\end{gathered}
$$

We define $h=x^{2}$ so we rewrite to quadratic equation:

$$
\frac{9}{25} x^{2}-\frac{4}{5} \sqrt{2 \cdot 9.8} x-4.9=0
$$

Thus,

$$
0.36 x^{2}-3.54175 x-4.9=0
$$

which we solve for x .

$$
\begin{gathered}
x_{1,2}=\frac{3.54175 \pm \sqrt{3.54175^{2}+4 \cdot 0.36 \cdot 4.9}}{2 \cdot 0.36} \\
x_{1}=11.068 \\
x_{2}=-1.22977
\end{gathered}
$$

and $h=x^{2}=11.068^{2}=122.5 \mathrm{~m}$.

Answer: $\quad h=122.5 \mathrm{~m}$.

