Answer on Question \#44319-Physics-Molecular Physics-Thermodynamics

For water its temperature is $50^{\circ} \mathrm{C}$ and room temperature is $30^{\circ} \mathrm{C}$ just after 5 minutes excess temperature reduce to half its value, calculate temperature of water next 2.5 minutes

Solution

Let's use Fourier's law for heat flow:

$$
\dot{q}=k\left(T_{w}-T_{r}\right),
$$

where T_{w} is the temperature of the water, T_{r} is the room temperature, k is the thermal conductivity coefficient.

Solving this equation gives:

$$
T_{w}-T_{r}=A e^{-B t}
$$

where A and B are constants.

When $t=0$

$$
T_{w}-T_{r}=A e^{-B \cdot 0}=A=50^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}=20^{\circ} \mathrm{C}
$$

When $t=5$ minutes

$$
T_{w}-T_{r}=\frac{20^{\circ} \mathrm{C}}{2}=10^{\circ} \mathrm{C}=20^{\circ} \mathrm{C} e^{-B \cdot 5 \mathrm{~min}} \rightarrow B=\frac{\ln 2}{5} \mathrm{~min}^{-1}
$$

The temperature of water next 2.5 minutes is

$$
T_{w}(7.5 \min)=30^{\circ} \mathrm{C}+20^{\circ} \mathrm{C} \cdot e^{-\frac{\ln 2}{5} \cdot 7.5}=30^{\circ} \mathrm{C}+20^{\circ} \mathrm{C} \cdot\left(e^{-\ln 2}\right)^{1.5}=30^{\circ} \mathrm{C}+20^{\circ} \mathrm{C} \cdot\left(\frac{1}{2}\right)^{1.5}=37^{\circ} \mathrm{C}
$$

Answer: $37^{\circ} \mathrm{C}$.

