Answer on Question \#44293-Physics-Mechanics-Kinematics-Dynamics

An airplane is flying vertically upwards with a uniform speed of $v_{10}=500 \frac{\mathrm{~m}}{\mathrm{~s}}$. when it is at a height of $h_{10}=$ 1000 m above the ground a shot is fired at it with a speed of $v_{2}=700 \frac{\mathrm{~m}}{\mathrm{~s}}$ from a point directly below it. What should be the uniform acceleration of the airplane now so that it may escape from being hit?

Solution

For escape from a shot when a shot and the airplane would have the same height then they have the same velocity. That's why the velocity of a shot relatively the airplane is zero.

$$
\begin{gathered}
h_{1}=h_{10}+v_{10} t+\frac{a t^{2}}{2} . \\
h_{2}=v_{2} t . \\
v_{2}=v_{1}=v_{10}+a t \rightarrow t=\frac{v_{2}-v_{10}}{a} . \\
h_{1}=h_{2} \rightarrow h_{10}+v_{10} t+\frac{a t^{2}}{2}=v_{2} t \rightarrow h_{10}-\left(v_{2}-v_{10}\right) t+\frac{a t^{2}}{2}=0 .
\end{gathered}
$$

Put $t=\frac{v_{2}-v_{10}}{a}$:

$$
\begin{gathered}
h_{10}-\left(v_{2}-v_{10}\right)\left(\frac{v_{2}-v_{10}}{a}\right)+\frac{a\left(\frac{v_{2}-v_{10}}{a}\right)^{2}}{2}=0 \rightarrow h_{10}-\frac{1}{2 a}\left(v_{2}-v_{10}\right)^{2}=0 \\
a=\frac{\left(v_{2}-v_{10}\right)^{2}}{2 h_{10}}=\frac{\left(700 \frac{\mathrm{~m}}{\mathrm{~s}}-500 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 1000 \mathrm{~m}}=20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
\end{gathered}
$$

Answer: $20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

