Answer on Question \#44272-Physics - Mechanics | Kinematics | Dynamics

A ball of mass 50 g is dropped from a height of 20 m . A boy on ground hits the ball vertically upwards with a bat with an average force of 200 N , so that it attains a vertical height of 45 m .the time for which the ball remains in contact with the bat is?(take $g=10 \mathrm{~m} / \mathrm{s}$)

Solution

According to the conservation of energy law potential energy of the ball on height $h_{1}=20 \mathrm{~m}$ is equal to kinetic energy of the ball on the ground:

$$
m g h_{1}=\frac{m v_{1}^{2}}{2} \rightarrow v_{1}=\sqrt{2 g h_{1}}
$$

When a boy on the ground hits the ball vertically upwards it have kinetic energy which equal potential energy of the ball on height $h_{2}=45 \mathrm{~m}$:

$$
\frac{m v_{2}^{2}}{2}=m g h_{2} \rightarrow v_{2}=\sqrt{2 g h_{2}}
$$

Impulse transmitted to the ball by bat:

$$
I=F \Delta t=P_{2}-P_{1}=m v_{2}-\left(-m v_{1}\right)=m\left(v_{1}+v_{2}\right)=m\left(\sqrt{2 g h_{1}}+\sqrt{2 g h_{2}}\right)
$$

P_{1} is negative because it is opposite to direction of force F.
A time for which the ball remains in contact with the bat:

$$
\Delta t=\frac{m\left(\sqrt{2 g h_{1}}+\sqrt{2 g h_{2}}\right)}{F}=\frac{50 \cdot 10^{-3} \mathrm{~kg}\left(\sqrt{2 \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 20 \mathrm{~m}}+\sqrt{2 \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 45 \mathrm{~m}}\right)}{200 \mathrm{~N}}=0.0125 \mathrm{~s}
$$

Answer: 0.0125s.

