Answer on Question \#44203-Physics-Mechanics-Kinematics-Dynamics

Men are running along a road at $15 \mathrm{~km} / \mathrm{hr}$ behind one another at equal intervals of 20 m . Cyclists are riding in the same direction at equal intervals of 30 m at what speed in $\mathrm{km} / \mathrm{hr}$ an observer travelling along the road in opposite direction so that whenever he meets a runner he also meets a cyclist.

Solution

Suppose runner and cyclist reach at same position in time t, and the observer has travelled x distance in this time.

Speed of runner is $15 \frac{\mathrm{~km}}{\mathrm{~h}}=\frac{25}{6} \frac{\mathrm{~m}}{\mathrm{~s}}$.
Speed of cyclist is $25 \frac{\mathrm{~km}}{\mathrm{~h}}=\frac{125}{18} \frac{\mathrm{~m}}{\mathrm{~s}}$.
Time t is $\frac{\text { distance travelled }}{\text { speed }}$:

$$
t=\frac{20-x}{\frac{25}{6}}=\frac{30-x}{\frac{125}{18}} \rightarrow x=5 m
$$

Putting it in equation we get

$$
t=\frac{18}{5} s=3.6 s
$$

Speed of observer to travel 5 meter distance in 3.6 sec is

$$
v=\frac{5 m}{\frac{18}{5} s}=\frac{25}{18} \frac{m}{s}=5 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

Answer: $5 \frac{\mathrm{~km}}{\mathrm{~h}}$.

