## Answer on Question \#44189, Physics, Quantum Mechanics

## Question:

a) Calculate the components of energy along $x, y$ and $z$ axes and the total energy for an electron in a cubical box of length $10^{\wedge}-9 \mathrm{~m}$, if $n x=3, n y=n z=1$. State the values of $n x$, ny and $n z$ for two other energy states which are degenerate with this level.

Hint: Use the principle of calculation of energy of a particle in the three dimensional box. (5)

## Answer:

The time-independent Schrodinger equation:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(r)+V(r) \psi(r)=E \psi(r)
$$

Since we are dealing with a 3-dimensional figure, we need to add the 3 different axes into the Schrodinger equation:

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2} \psi(r)}{d x^{2}}+\frac{d^{2} \psi(r)}{d y^{2}}+\frac{d^{2} \psi(r)}{d z^{2}}\right)=E \psi(r)
$$

The easiest way in solving this partial differential equation is by having the wave function equal to each individual function for its individual variable:

$$
\Psi(x, y, z)=X(x) Y(y) Z(z)
$$

Now each function has its own variable:
Now substitute $\Psi(x, y, z)$ into Schrodinger equation and divide it by the product, $X(x) Y(y) Z(z)$ :

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{1}{X(x)} \frac{d^{2} \psi(r)}{d x^{2}}+\frac{1}{Y(y)} \frac{d^{2} \psi(r)}{d y^{2}}+\frac{1}{Z(z)} \frac{d^{2} \psi(r)}{d z^{2}}\right)=E
$$

Now separate each term in last equation to equal zero:

$$
\begin{aligned}
& \frac{d^{2} X}{d x^{2}}+\frac{2 m}{\hbar^{2}} E_{x} X=0 \\
& \frac{d^{2} Y}{d x^{2}}+\frac{2 m}{\hbar^{2}} E_{y} X=0
\end{aligned}
$$

$$
\frac{d^{2} Z}{d x^{2}}+\frac{2 m}{\hbar^{2}} E_{Z} X=0
$$

Solution for this equation is (the same for variables $y$ and $z$ ):

$$
E_{x}=\frac{n_{x}^{2} h^{2}}{8 m a^{2}}
$$

Now we can add all the energies together to get the total energy:

$$
E=E_{x}+E_{y}+E_{z}=\frac{h^{2}}{8 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

The component of energy along $x$ axis:

$$
E_{x}=\frac{n_{x}^{2} h^{2}}{8 m a^{2}} \cong 3.39 \mathrm{eV}
$$

The components of energy along $y$ and $z$ axes:

$$
E_{y}=E_{z}=\frac{n_{x}^{2} h^{2}}{8 m a^{2}}=\frac{h^{2}}{8 m a^{2}} \cong 0.38 \mathrm{eV}
$$

Total energy equals:

$$
E=E_{x}+E_{y}+E_{z} \cong 4.15 \mathrm{eV}
$$

Other 2 states with the same energy are:

$$
\begin{gathered}
n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=3^{2}+1+1=11 \\
n_{x}=1, n_{y}=1, n_{z}=3 \\
n_{x}=1, n_{y}=3, n_{z}=1
\end{gathered}
$$

