Answer on Question \#44163 - Engineering - Mechanics, Kinematics, Dynamics

A particle starts with initial speed 'u' and retardation 'a' to come to rest in time T. Calculate the time taken to cover first half of the total path travelled.

Solution:

u - initial speed of the particle;
a - retardation of the particle;
T - time of traveling;
t - time taken to cover first half of the total path;
Equation of motion for the particle (D - travelled distance):

$$
\begin{equation*}
\mathrm{D}=\mathrm{uT}-\frac{\mathrm{aT}^{2}}{2} \tag{1}
\end{equation*}
$$

Equation of motion for the particle for the first half of the path:

$$
\begin{gathered}
\frac{D}{2}=u t-\frac{a t^{2}}{2} \\
\frac{(1) \operatorname{in}(2):}{u T-\frac{a T^{2}}{2}}=u t-\frac{a t^{2}}{2} \\
u T-\frac{a T^{2}}{2}=2 u t-a^{2} \\
a t^{2}-2 u t+T\left(u-\frac{a T}{2}\right)=0
\end{gathered}
$$

We have a quadratic equation and we need only positive root:

$$
\mathrm{t}=\frac{2 \mathrm{u}+\sqrt{4 \mathrm{u}^{2}-4 \mathrm{aT}\left(\mathrm{u}-\frac{\mathrm{aT}}{2}\right)}}{2 \mathrm{a}}=\frac{\mathrm{u}+\sqrt{\mathrm{u}^{2}-\mathrm{aT}\left(\mathrm{u}-\frac{\mathrm{aT}}{2}\right)}}{\mathrm{a}}
$$

Answer: time taken to cover first half of the total path: $t=\frac{u+\sqrt{u^{2}-a T\left(u-\frac{a T}{2}\right)}}{a}$

