Answer on Question \#44021 - Physics - Mechanics-Kinematics-Dynamics

the magnitude of two vectors p bar ad q bar differ by 1 . the magnitude of their resultant makes an angle of tan inverse (3/4) with p. the angle between p and q is

Solution:

$\alpha=\arctan \left(\frac{3}{4}\right)-$ angle between vector p and resultant vector;
β - angle between vector p and vector q;
First vector:

$$
\mathrm{p}=\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) \text {, magnitude }: \mathrm{P}=\sqrt{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}}
$$

Second vector:

$$
\mathrm{q}=\left(\mathrm{q}_{\mathrm{x}}, \mathrm{q}_{\mathrm{y}}\right) \text {, magnitude: } \mathrm{Q}=\sqrt{\mathrm{q}_{\mathrm{x}}^{2}+\mathrm{q}_{\mathrm{y}}^{2}}
$$

Let's make a substitution:

$$
\mathrm{p}_{\mathrm{x}} \mathrm{q}_{\mathrm{x}}+\mathrm{p}_{\mathrm{y}} \mathrm{q}_{\mathrm{y}}=\mathrm{X}
$$

Difference between magnitude of two vectors:

$$
\begin{align*}
& \mathrm{P}-\mathrm{Q}=1 \\
& \mathrm{Q}=\mathrm{P}-1 \tag{1}
\end{align*}
$$

Resultant vector:

$$
\begin{gathered}
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}} \\
\mathrm{r}=\left(\mathrm{p}_{\mathrm{x}}+\mathrm{q}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}+\mathrm{q}_{\mathrm{y}}\right)
\end{gathered}
$$

Scalar product of the first vector and resultant vector:

$$
\begin{gathered}
\vec{p} \cdot \vec{r}=p_{x}\left(p_{x}+q_{x}\right)+p_{y}\left(p_{y}+q_{y}\right)=|\vec{p}| \cdot|\vec{r}| \cdot \cos \alpha= \\
=P \cdot \sqrt{\left(p_{x}+q_{x}\right)^{2}+\left(p_{y}+q_{y}\right)^{2}} \cdot \cos \alpha \\
p_{x}^{2}+p_{y}^{2}+p_{x} q_{x}+p_{y} q_{y}=P \cdot \sqrt{\left(p_{x}+q_{x}\right)^{2}+\left(p_{y}+q_{y}\right)^{2}} \cdot \cos \alpha \\
P^{2}+X=P \cdot \sqrt{\left(p_{x}+q_{x}\right)^{2}+\left(p_{y}+q_{y}\right)^{2}} \cdot \cos \alpha= \\
=P \sqrt{p_{x}^{2}+2 p_{x} q_{x}+q_{x}^{2}+p_{y}^{2}+2 p_{y} q_{y}+q_{y}^{2}} \cdot \cos \alpha \\
=P \sqrt{P^{2}+Q^{2}+2 X} \cdot \cos \alpha
\end{gathered}
$$

Scalar product of the first vector and second vector:

$$
\begin{gather*}
\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=\mathrm{p}_{\mathrm{x}} \mathrm{q}_{\mathrm{x}}+\mathrm{p}_{\mathrm{y}} \mathrm{q}_{\mathrm{y}}=|\overrightarrow{\mathrm{p}}| \cdot|\overrightarrow{\mathrm{q}}| \cdot \cos \beta= \\
=\mathrm{P} \cdot \mathrm{Q} \cdot \cos \beta \tag{3}\\
\cos \beta=\frac{\mathrm{p}_{\mathrm{x}} \mathrm{q}_{\mathrm{x}}+\mathrm{p}_{\mathrm{y}} q_{\mathrm{y}}}{\mathrm{P} \cdot \mathrm{Q}}=\frac{X}{\mathrm{P} \cdot \mathrm{Q}}
\end{gather*}
$$

Thus, we have system with three equations:

$$
\left\{\begin{array}{c}
\mathrm{Q}=\mathrm{P}-1 \\
\mathrm{P}^{2}+\mathrm{X}=\mathrm{P} \sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}+2 \mathrm{X}} \cdot \cos \alpha \\
\cos \beta=\frac{\mathrm{X}}{\mathrm{P} \cdot \mathrm{Q}}
\end{array}\right.
$$

We have 3 equations and 4 unknown (P, Q, X and $\cos \beta$), hence we can't find $\cos \beta$ - cosine of angle between vector p and vector q.

