

Answer on Question #43955, Physics, Atomic Physics

Calculate the velocity of electron ejected from a platinum surface when radiation of $\lambda = 200$ nm falls on it. The work function of platinum is $A = 5$ eV = $8 \cdot 10^{-19}$ J (1 eV = $1.6 \cdot 10^{-19}$ J).

Solution

Velocity can be found from energy conservation law

$$hc/\lambda = A + mv^2/2$$

$$v = \sqrt{2(hc/\lambda - A)/m} = \sqrt{2(6.3 \cdot 10^{-34} \cdot 3 \cdot 10^8 / (200 \cdot 10^{-9}) - 8 \cdot 10^{-19}) / (9.1 \cdot 10^{-31})} \\ \approx 0.4 \cdot 10^6 \text{ m/s}$$