

Answer on Question #43910-Physics-Electrodynamics

What is the ratio of drift velocity and rms velocity of an electron in room temperature?

Solution

RMS velocity of an electron at room temperature is

$$v_{RMS} = \sqrt{\frac{3kT}{m_e}}$$

where $T = 300 \text{ K}$, k is the Boltzmann constant, m_e is the mass of an electron.

Drift velocity of an electron is

$$v_{drift} = \frac{eE\tau}{2m_e}$$

where e is a charge of an electron, τ is mean free time between collisions (at room temperature $\tau = 3 \cdot 10^{-14} \text{ s}$), E is an electric field.

The ratio of drift velocity and rms velocity of an electron in room temperature is

$$\frac{v_{drift}}{v_{RMS}} = \frac{\frac{eE\tau}{2m_e}}{\sqrt{\frac{3kT}{m_e}}}$$

For example in an electric field of $100 \frac{V}{m}$ this ratio is equal

$$\frac{v_{drift}}{v_{RMS}} = \frac{\frac{1.60 \cdot 10^{-19} \text{ C} \cdot 100 \frac{V}{m} \cdot 3 \cdot 10^{-14} \text{ s}}{2 \cdot 9.11 \cdot 10^{-31} \text{ kg}}}{\sqrt{\frac{3 \cdot 1.38 \cdot 10^{-23} \frac{J}{K} \cdot 300 \text{ K}}{9.11 \cdot 10^{-31} \text{ kg}}}} = \frac{0.26}{1.2 \cdot 10^5} = 2.1 \cdot 10^{-6}$$