

Answer on Question #43896, Physics, Optics

Find the effective power of the combination of two lenses in contact having powers

- (i) +5D and +3D
- (ii) +5D and -3D.

Solution:

In Figure 1, let the focal lengths of the two lenses be f_1 and f_2 .

$$u_1 = OC_1 \text{ and } v_1 = I_1 C_1$$

$$u_2 = -C_1 I_1 \text{ which is approximately equal to } C_2 I_1 \text{ and } v_2 = C_2 I \text{ which is approximately equal to } C_1 I$$

Therefore

$$\frac{1}{u_1} + \frac{1}{v_1} = \frac{1}{f_1}$$

and

$$\frac{1}{u_2} + \frac{1}{v_2} = \frac{1}{f_2}$$

$$\frac{1}{OC_1} + \frac{1}{I_1 C_1} = \frac{1}{f_1}$$

and

$$\frac{1}{-C_1 I_1} + \frac{1}{C_2 I} = \frac{1}{f_2}$$

Therefore:

$$\frac{1}{OC_1} + \frac{1}{I_1 C_1} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{F}$$

Combined focal length of two thin lenses in contact is given by:

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

For powers we will have

$$P = P_1 + P_2$$

(i) +5D and +3D

$$P = P_1 + P_2 = 5D + 3D = 8D$$

(ii) +5D and -3D.

$$P = P_1 + P_2 = 5D - 3D = 2D$$

Answer: (i) $P = 8D$, (ii) $P = 2D$.