

Answer on Question #43846 – Physics – Other

Question.

A 93 g piece of copper is heated in a furnace to a temperature T . The copper is then inserted into a 150 g copper calorimeter containing 193 g of water. The initial temperature of the water and calorimeter is 16 °C, and the final temperature after equilibrium is established is 38 °C. When the calorimeter and its contents are weighed, 35.0 g of water are found to have evaporated. What was the temperature T ?

$$m_{cop} = 93 \text{ g} = 0.093 \text{ kg}$$

$$m_{cal} = 150 \text{ g} = 0.15 \text{ kg}$$

$$m_{wat} = 193 \text{ g} = 0.193 \text{ kg}$$

$$m_{vap} = 35 \text{ g} = 0.035 \text{ kg}$$

$$T_{vap} = 100^\circ\text{C} = 373 \text{ K}$$

$$T_{in} = 16^\circ\text{C} = 289 \text{ K}$$

$$T_{fin} = 38^\circ\text{C} = 311 \text{ K}$$

$$c_{cop} = 385 \frac{\text{J}}{\text{kg}\cdot\text{K}} \text{ is the heat capacity of copper}$$

$$c_{wat} = 4200 \frac{\text{J}}{\text{kg}\cdot\text{K}} \text{ is the heat capacity of water}$$

$$r = 2.26 \cdot 10^6 \frac{\text{J}}{\text{kg}} \text{ is the heat of vaporization of water}$$

$$T = ?$$

Solution.

In this task, the following process takes place:

A piece of copper heats m_{vap} of water to T_{vap} degrees and vaporizes it, and the rest of water and calorimeter are heated to T_{fin} . From other hand, itself a piece of copper cools to a temperature T_{fin} .

Write this process in the form of heat balance:

$$Q_{cool} = Q_{heat}$$

$$Q_{cool} = m_{cop}c_{cop}(T - T_{fin})$$

$$Q_{heat} = Q_{heating} + Q_{vaporization}$$

$$Q_{heating} = m_{cal}c_{cop}(T_{fin} - T_{in}) + (m_{wat} - m_{vap})c_{wat}(T_{fin} - T_{in}) + m_{vap}c_{wat}(T_{vap} - T_{in})$$

$$Q_{vaporization} = m_{vap}r$$

So, we received:

$$m_{cop}c_{cop}(T - T_{fin}) =$$

$$= m_{cal}c_{cop}(T_{fin} - T_{in}) + (m_{wat} - m_{vap})c_{wat}(T_{fin} - T_{in})$$

$$+ m_{vap}c_{wat}(T_{vap} - T_{in}) + m_{vap}r$$

Therefore,

$$T = T_{fin} +$$

$$+ \frac{m_{cal}c_{cop}(T_{fin} - T_{in}) + (m_{wat} - m_{vap})c_{wat}(T_{fin} - T_{in}) + m_{vap}c_{wat}(T_{vap} - T_{in}) + m_{vap}r}{m_{cop}c_{cop}}$$

Calculate:

$$T = 311 + \frac{1270.5 + 14599.2 + 12348 + 79100}{35.805} = 311 + \frac{107317.7}{35.805} = 311 + 2997 =$$

$$= 3308 K = 3035^{\circ}C$$

I want to notice, that real melting point of copper is 1356 K or 1083°C . So, this problem is not correct. But from thermodynamics we received the current answer.

Answer.

$$T = T_{fin} +$$

$$+ \frac{m_{cal}c_{cop}(T_{fin} - T_{in}) + (m_{wat} - m_{vap})c_{wat}(T_{fin} - T_{in}) + m_{vap}c_{wat}(T_{vap} - T_{in}) + m_{vap}r}{m_{cop}c_{cop}}$$

$$T = 3308 K = 3035^{\circ}C$$