


Answer on Question #43684, Physics, Electric Circuits

the radii of two charged spheres are 5cm and 10cm. each has a charge of 75 microcoulomb. they are connected by a conducting wire. calculate their common potential and amount of charge transferred.

Solution.

After connection potentials became equal:

1) The Law of Conservation of Charge:

$$2q = q_1 + q_2$$

2) Potentials are equal:

$$\varphi_1 = \varphi_2 \Rightarrow \frac{1}{4\pi\epsilon_0 R_1} \frac{q_1}{R_1} = \frac{1}{4\pi\epsilon_0 R_2} \frac{q_2}{R_2} \Rightarrow \frac{q_1}{R_1} = \frac{q_2}{R_2} \Rightarrow q_2 = q_1 \frac{R_2}{R_1}$$

So:

$$2q = q_1 + q_1 \frac{R_2}{R_1} = q_1 \left(1 + \frac{R_2}{R_1}\right) \Rightarrow q_1 = \frac{2q}{1 + \frac{R_2}{R_1}}$$

$$q_2 = 2q - q_1 = 2q - \frac{2q}{1 + \frac{R_2}{R_1}} = \frac{2q \left(1 + \frac{R_2}{R_1}\right) - 2q}{1 + \frac{R_2}{R_1}} = \frac{2q \frac{R_2}{R_1}}{1 + \frac{R_2}{R_1}} = \frac{2q}{1 + \frac{R_1}{R_2}}$$

In our case $R_2 > R_1$ so $q_1 < q, q_2 > q$

If amount of transferred charge is Δq , then

$q_1 = q - \Delta q; q_2 = q + \Delta q$, and:

$$\Delta q = \frac{q_2 - q_1}{2} = \frac{2q}{2} \left(\frac{1}{1 + \frac{R_1}{R_2}} - \frac{1}{1 + \frac{R_2}{R_1}} \right) = q \left(\frac{\frac{R_2}{R_1} - 1}{1 + \frac{R_2}{R_1}} \right) = q \frac{\frac{R_2}{R_1} - 1}{\frac{R_2}{R_1} + 1}$$

Potential:

$$\varphi_1 = \varphi_2 = \frac{1}{4\pi\epsilon_0} \frac{q_1}{R_1} = \frac{1}{4\pi\epsilon_0} \frac{2q}{R_1 \left(1 + \frac{R_2}{R_1}\right)} = \frac{1}{2\pi\epsilon_0} \frac{q}{R_1 + R_2}$$

Numerically:

$$\Delta q = 75 \cdot 10^{-6} C \cdot \frac{\frac{0.1m}{0.05m} - 1}{\frac{0.1m}{0.05m} + 1} = 25 \cdot 10^{-6} C$$

$$\varphi = \frac{1}{2 \cdot 3.14 \cdot 8.85 \cdot 10^{-12} \frac{F}{m}} \frac{75 \cdot 10^{-6} C}{0.05m + 0.1m} \approx 9 \cdot 10^6 V$$