Answer on Question \#43667-Physics - Mechanics | Kinematics | Dynamics

Two trains start at the same time from Delhi and Jalandhar, distance of 400 km , travelling, one at the rate of $48 \mathrm{~km} / \mathrm{hr}$ and the other at $72 \mathrm{~km} / \mathrm{hr}$. Where will they meet and in what time from starting.

Solution:

S $=400 \mathrm{~km}$ - distance between two trains;
$\mathrm{V}_{1}=48 \frac{\mathrm{~km}}{\mathrm{hr}}-$ velocity of the first train;
$\mathrm{V}_{2}=72 \frac{\mathrm{~km}}{\mathrm{hr}}-$ velocity of the first train;
Let trains are moving towards and the distance travelled by the train with slower speed be x. Accordingly the distance travelled by the faster train will be $y=S-x$. Let the time taken by the trains to travel the distance be t

According to question:

$$
\begin{align*}
& \text { first (slower)train : } \mathrm{t}=\frac{\mathrm{x}}{\mathrm{~V}_{1}} \tag{1}\\
& \text { second (faster) train : } t=\frac{y}{V_{2}}=\frac{S-x}{V_{2}} \tag{2}\\
& (1)=(2): \\
& \frac{\mathrm{x}}{\mathrm{~V}_{1}}=\frac{\mathrm{S}-\mathrm{x}}{\mathrm{~V}_{2}} \\
& \mathrm{~V}_{2} \mathrm{x}=\mathrm{SV}_{1}-\mathrm{V}_{1} \mathrm{x} \\
& x\left(V_{1}+V_{2}\right)=S V_{1} \\
& x=\frac{S V_{1}}{V_{1}+V_{2}}=\frac{400 \mathrm{~km} \cdot 48 \frac{\mathrm{~km}}{\mathrm{hr}}}{48 \frac{\mathrm{~km}}{\mathrm{hr}}+72 \frac{\mathrm{~km}}{\mathrm{hr}}}=160 \mathrm{~km} \\
& \mathrm{y}=\mathrm{S}-\mathrm{x}=400 \mathrm{~km}-160 \mathrm{~km}=240 \mathrm{~km} \\
& \mathrm{t}=\frac{\mathrm{x}}{\mathrm{~V}_{1}}=\frac{160 \mathrm{~km}}{48 \frac{\mathrm{~km}}{\mathrm{hr}}}=3 \text { hours } 20 \text { minutes }
\end{align*}
$$

Answer: trains will meet 160 km from station where slower train has been started to move; they will meet after 3 hours 20 minutes.

