


Answer on Question #43482, Physics, Mechanics | Kinematics | Dynamics

if the gravitational force between two objects is proportional to $1/R$ (and not to $1/R^2$) where R is the separation between them, then particle in circular orbit under such force would have its orbital speed v proportional to?

OPTIONS

- a) $1/R^2$
- b) R
- C) R^1
- d) $1/R$

Solution.

From Newton's 2nd law for the particle:

$$F_{grav} = ma_c$$

Where a_c is centripetal acceleration of particle.

From condition:

$$F_{grav} = \frac{\alpha}{R}$$

So:

$$\frac{\alpha}{R} = ma_c = m \frac{V^2}{R} \Rightarrow V = \sqrt{\frac{\alpha}{m}} = \sqrt{\frac{\alpha}{m}} \cdot R^0$$

Answer: $V \sim R^0$

no right answer among proposed options.

Options b) and c) looks the same. Check the condition.