Answer on Question \#43390 - Physics - Other

Question.

A shot putter throws the shot (mass=7.3 kg) with an initial speed of $14.4 \mathrm{~m} / \mathrm{s}$ at a 34.0 degree angle to the horizontal. Calculate the horizontal distance traveled by the shot if it leaves the athlete's hand at a height of 2.1 m above the ground.

Given:
$m=7.3 \mathrm{~kg}$
$v_{0}=14.4 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\theta=34^{\circ}$
$h=2.1 m$

Find:
$L=?$

Solution.

Fig.1. The trajectory of motion in our case.

The horizontal velocity is:

$$
v_{x}=v_{0} \cos \theta
$$

The vertical velocity is:

$$
v_{y}=v_{0} \sin \theta
$$

We can find the time of travel, if we consider the vertical motion. By definition the displacement is:

$$
y=y_{0}+v t+\frac{a t^{2}}{2}
$$

For the vertical motion in our case:

$$
\begin{gathered}
y_{0}=h \\
v=v_{y}=v_{0} \sin \theta \\
a=-g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

So, the time of travel is at $y=0$, therefore:

$$
-\frac{g}{2} t^{2}+v_{0} \sin \theta t+h=0
$$

Let solve this quadratic equation:

$$
t=\frac{-v_{0} \sin \theta \pm \sqrt{v_{0}^{2} \sin ^{2} \theta+2 g h}}{-g}
$$

Calculate:

$$
\begin{gathered}
t=\frac{-14.4 \cdot 0.56-\sqrt{(14.4 \cdot 0.56)^{2}+2 \cdot 9.8 \cdot 2.1}}{-9.8}=\frac{-8.05-\sqrt{105.96}}{-9.8}=\frac{-8.05-10.29}{-9.8}= \\
=1.87 \mathrm{~s}
\end{gathered}
$$

We selected the sign "-", because other answer is negative.

From the horizontal motion we know, that the horizontal distance traveled is:

$$
L=v_{x} t=v_{0} t \cos \theta
$$

So,

$$
L=14.4 \cdot 1.87 \cdot 0.829=22.32 \mathrm{~m}
$$

Answer.

$L=22.32 \mathrm{~m}$

