Answer on Question \#43370-Physics-Other

You have heard that covering your head is an excellent way to keep warm during cold days. Let's model the head as a 17 diameter, 20 cm tall cylinder with a flat top. If the body's surface temperature is 350 C , what is the rate of heat loss from the top of the head only on a chilly $40 C$ day? Assume all skin color regardless of color behaves like a black body in infrared where the radiation loss occurs.

Solution

If a hot object is radiating energy to its cooler surroundings the net radiation heat loss rate can be expressed as

$$
q=\varepsilon \sigma\left(T_{h}^{4}-T_{c}^{4}\right) A_{C}
$$

where T_{h} is hot body absolute temperature, T_{c} is cold surroundings absolute temperature, A_{c} is area of the object, ε is emissivity of the object (one for a black body), $\sigma=5.67 \cdot 10^{-8}\left(\frac{W}{m^{2} K^{4}}\right)$ is The Stefan-Boltzmann Constant.

An area of tall cylinder is

$$
A=2 \pi r(r+h)
$$

The body's surface temperature is $T_{h}=273+35=308 \mathrm{~K}$. The cold surroundings absolute temperature is $T_{c}=273+4=277 \mathrm{~K}$.

The rate of heat loss is

$$
q=1 \cdot 5.67 \cdot 10^{-8}\left(\frac{W}{m^{2} K^{4}}\right)\left(308^{4}-277^{4}\right) K^{4} \cdot 2 \pi \cdot 0.085(0.085+0.2)\left(m^{2}\right)=27 W
$$

Answer: 27 W.

