Answer on Question \#43270, Physics, Mechanics | Kinematics | Dynamics

What is the difference in blood pressure between the top of the head and bottom of the feet of 1.6 m tall person standing vertically (density of blood $\rho=1.05 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$)
A. $1.6 \times 10^{\wedge} 4 \mathrm{~Pa}$
B. $1.6 \times 10^{\wedge} 5 \mathrm{~Pa}$
C. $3.2 \times 10^{\wedge} 5 \mathrm{~Pa}$
D. $1.6 \times 10^{\wedge} 6 \mathrm{~Pa}$
E. $3.2 \times 10^{\wedge} 6 \mathrm{~Pa}$

Solution:

The difference in static pressure is density (rho) times gravity (g) times difference in height (h)

$$
\Delta P=\rho g \Delta h
$$

Thus,

$$
\Delta P=\left(1.05 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.6 \mathrm{~m})=1.65 \times 10^{4} \mathrm{~Pa}
$$

Answer: A. $1.6 \times 10^{\wedge} 4 \mathrm{~Pa}$

