Answer on Question \#43269, Physics, Other

A car accelerates from rest at constant rate of $2 \mathrm{~ms}^{-2}$ for some time. Then it retards at a constant rate of $4 \mathrm{~ms}^{-2}$ and comes to rest. Calculate the maximum speed attained by the car if it remains in motion for 3 seconds.

Solution:

Given:

```
\(a_{1}=2 \mathrm{~m} / \mathrm{s}^{2}\),
\(a_{2}=-4 \mathrm{~m} / \mathrm{s}^{2}\),
\(t=3 \mathrm{~s}\),
\(v=\) ? ,
```

For the first period of motion the acceleration is

$$
\begin{gathered}
a_{1}=\frac{v-v_{0}}{t_{1}}=\frac{v}{t_{1}} \\
t_{1}=\frac{v}{a_{1}}
\end{gathered}
$$

For the second period of motion the acceleration is

$$
\begin{gathered}
a_{2}=\frac{0-v}{t_{2}}=-\frac{v}{t_{2}} \\
t_{2}=\frac{-v}{a_{2}}
\end{gathered}
$$

From given

$$
t=t_{1}+t_{2}=\frac{v}{a_{1}}-\frac{v}{a_{2}}=v\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right)
$$

Thus,

$$
\begin{gathered}
v=\frac{t}{\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right)} \\
v=\frac{3}{\frac{1}{2}+\frac{1}{4}}=4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer: $\quad v=4 \mathrm{~m} / \mathrm{s}$.

