Answer on Question \#43263, Physics, Mechanics | Kinematics | Dynamics

Box A, mass 12 kg is tied to box B, mass 15 kg , by a rope. Box A is pulled away from B with a force of 35 N . Once moving, A experiences a force of frictions of 11 N and B of 14 N . What is the force of tension in the rope between the boxes?

Solution:

After drawing the free-body diagram, we apply the equation of motion in the x-direction to get

$$
\sum F_{x}=m a
$$

For box A:

$$
\begin{aligned}
& m_{A} a=F-T-F_{f r A} \\
& m_{B} a=T-F_{f r B}
\end{aligned}
$$

For box B:

From given we have system of two equations
For box A: $\quad 12 a=35-T-11$
For box B: $\quad 15 a=T-14$
From second equation

$$
T=15 a+14
$$

Substitute to first equation

$$
\begin{gathered}
12 a=35-15 a-14-11 \\
27 a=10 \\
a=\frac{10}{27}
\end{gathered}
$$

Thus,

$$
T=15 \cdot \frac{10}{27}+14=19.6 \mathrm{~N}
$$

Answer: $\quad T=19.6 \mathrm{~N}$

