Answer on Question \#43221 - Physics - Mechanics | Kinematics

Question.

The force f acting on a body depends upon its 1.mass 2 . acceleration. Find the expression for the force f using the method of dimensions.

Solution.

Let define three basic units:

- l is the length or displacement (in meters - m);
- m is the mass (in kilograms -kg) ;
- t is the time (in seconds $-s$).

Therefore, acceleration a (its unit is $\frac{m}{s^{2}}$) can be represented by:

$$
a=\frac{\text { length }}{\text { time }^{2}}=\frac{l}{t^{2}}
$$

We know, that the unit of the force is Newton:

$$
N=\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}
$$

And the force f (its units is N) can be represented by:

$$
f=\text { mass } \cdot \text { acceleration }=\text { mass } \cdot \frac{\text { length }}{t i m e^{2}}=m \frac{l}{t^{2}}=m a
$$

So, we obtained $f=m a$, using the method of dimensions, because:

$$
\begin{gathered}
f=[N]=\left[\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}\right] \\
m=[\mathrm{kg}] \\
a=\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right]
\end{gathered}
$$

Answer.

$f=m a$

