Answer on Question \#43200 - Physics - Electric Circuits

Question.

A 26Ω loudspeaker and an 8Ω loudspeaker are connected in parallel across the terminals of an amplifier. Assuming the speakers behave as resistors, calculate the equivalent resistance of the two speakers.

Given:
$R_{1}=26 \Omega$
$R_{2}=8 \Omega$
Find:
$R=$?

Solution.

Fig.1. The parallel circuit.
By definition to find the total resistance of all components, add the reciprocals of the resistances R_{i} of each component and take the reciprocal of the sum. Total resistance will always be less than the value of the smallest resistance.

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}
$$

Fig.2. The parallel circuit of loudspeakers in our case.

In our case,

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \rightarrow R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Calculate:

$$
R=\frac{26 \cdot 8}{26+8}=\frac{208}{34}=6.12 \Omega
$$

Answer.

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=6.12 \Omega
$$

