Answer on Question \#43188, Physics, Mechanics | Kinematics
 Dynamics

A car travelling at a speed of $54 \mathrm{~km} / \mathrm{h}$ is bought to rest in 90 seconds find the acceleration and distance travelled by car before coming to rest

Solution.

From definition of acceleration we obtain:
$a=\frac{\Delta V}{\Delta t}$
$\Delta V=54 \frac{\mathrm{~km}}{\mathrm{~h}}=15 \frac{\mathrm{~m}}{\mathrm{~s}} ; \Delta t=90 \mathrm{~s}$
Thus:
$a=\frac{15 \frac{\mathrm{~m}}{\mathrm{~s}}}{90 \mathrm{~s}} \approx 0.167 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Travelled distance:
$L=\frac{a \Delta t^{2}}{2}=\frac{\Delta V \Delta t}{2}=\frac{15 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 90 \mathrm{~s}}{2}=675 \mathrm{~m}$
Answer:
$a \approx 0.167 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$L=675 m$

