Question \#43179, Physics, Other

On a 60 km straight road, a bus travels the first 30 km with a uniform speed of $30 \mathrm{kmh}-1$. How fast must the
bus travel the next 30 km so as to have average speed of $40 \mathrm{kmh}-1$ for the entire trip?

Solution:

We know formula for average speed when we have two parts of hole trip:

$$
\begin{equation*}
v_{a v r}=\frac{S_{1}+S_{2}}{t_{1}+t_{2}} \tag{1}
\end{equation*}
$$

where S_{1} - first part of trip $\left(S_{1}=30 \mathrm{~km}^{-1}\right), S_{2}$ - second part of trip $\left(S_{2}=30 \mathrm{kmh}^{-1}\right), t_{1}$ and t_{2} - time on this two parts respectively.

We also know that:

$$
\begin{aligned}
& t_{1}=\frac{S_{1}}{v_{1}} \\
& t_{2}=\frac{S_{2}}{v_{2}}
\end{aligned}
$$

Let`s place this two formulas in (1):

$$
v_{\text {avr }}=\frac{S_{1}+S_{2}}{\frac{S_{1}}{v_{1}}+\frac{S_{2}}{v_{2}}}
$$

Also we know that $S_{1}=S_{2}=S$, where S is hole road. Let's change our formula and reduce (where possible on S):

$$
v_{\text {avr }}=\frac{2}{\frac{1}{v_{1}}+\frac{1}{v_{2}}}=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}
$$

We know $v_{\text {avr }}=40 . v_{1}=30$. Let's $v_{2}=x$
Let`s solve our expression and get : $v_{2}=60 \mathrm{kmh}^{-1}$.

