Answer on Question \#43159, Physics, Mechanics

A body is travelling with a velocity of $100 \mathrm{~m} / \mathrm{s}$ accelerates uniformly at the rate of $10 \mathrm{~m} / \mathrm{s} 2$ for a period of 20 second. Calculate the velocity \& the distance travelled in 30 second

Solution.

Lets mark $\mathrm{t}_{1}=20 \mathrm{~s}, \mathrm{t}_{\mathrm{a} \|}=30 \mathrm{~s}$

All way can be divided on two parts: uniformly accelerated motion (l_{1}) and uniform motion (I_{2})

From relations of uniformly accelerated motion:
$l=V_{0 x} t+\frac{a_{x} t^{2}}{2}$
$V_{x}=V_{0 x}+a_{x} t$
Thus:
$l_{1}=V_{0} t_{1}+\frac{a t_{1}^{2}}{2}$
$V_{1}=V_{0}+a t_{1}$
For the second part (uniform motion):
$l_{2}=V_{1}\left(t_{\text {all }}-t_{1}\right)$
And the velocity at the end of the segment stays the same.
So finally:
$V_{1}=V_{0}+a t_{1}$
$\begin{aligned} l=l_{1}+l_{2}= & V_{0} t_{1}+\frac{a t_{1}^{2}}{2}+V_{1}\left(t_{\text {all }}-t_{1}\right) \\ & =V_{0} t_{1}+\frac{a t_{1}^{2}}{2}+\left(V_{0}+a t_{1}\right)\left(t_{\text {all }}-t_{1}\right)\end{aligned}$
Numerically:
$V_{1}=V_{0}+a t_{1}=100 \frac{\mathrm{~m}}{\mathrm{~s}}+10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 20 \mathrm{~s}=300 \frac{\mathrm{~m}}{\mathrm{~s}}$
$l=V_{0} t_{1}+\frac{a t_{1}^{2}}{2}+\left(V_{0}+a t_{1}\right)\left(t_{\text {all }}-t_{1}\right)=$
$=100 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 20 s+\frac{10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(20 \mathrm{~s})^{2}}{2}+\left(100 \frac{\mathrm{~m}}{\mathrm{~s}}+10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 20 \mathrm{~s}\right)(30 \mathrm{~s}-20 \mathrm{~s})=$
$=2000 m+2000 m+3000 m=7000 m$
Answer:
$V_{1}=300 \frac{\mathrm{~m}}{\mathrm{~s}}$
$l=7000 m$

