Answer on Question \#43125-Physics-Optics

Unknown spherical mirror is used to form an erect image three times the original size for an object placed at distance 15 cm from it find

1-the image position

Solution

The magnification of a mirror is defined as the height of the image divided by the height of the object:

$$
m=\frac{h_{i}}{h_{\mathrm{o}}}=-\frac{d_{i}}{d_{\mathrm{o}}}
$$

The image position is

$$
d_{i}=-3 \cdot 15 \mathrm{~cm}=-45 \mathrm{~cm}
$$

I.e. image is located at distance 45 cm from the mirror on the other side of the source object.

2-the focal length

Solution

From the mirror equation

$$
\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

the focal length is

$$
f=\frac{1}{\frac{1}{d_{0}}+\frac{1}{d_{i}}}=\frac{1}{\frac{1}{15}+\frac{1}{-45}}=22.5 \mathrm{~cm}
$$

3-the kind of the mirror

Answer

The image is erect and larger than origin, that's why this is a concave spherical mirror.

