Answer on Question \#43120 - Physics - Molecular Physics

Question.

Find the magnitude and ratio of internal energies for 5moles of mono-atomic gas to the diatomic gas at temperature 27c.

Given:
$v=5$ moles
$T=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
Find:
$U_{1}=? U_{2}=$?
$\frac{U_{2}}{U_{1}}=$?

Solution.

From the thermodynamics it's known that internal energy is:

$$
U=\frac{i}{2} v R T
$$

i is the number of degrees of freedom;
$R=8.31 \frac{J}{\mathrm{~mole} \cdot \mathrm{~K}}$ is the gas constant.
For monoatomic gas $i=3$, for diatomic gas $i=5$.
So,

$$
U_{1}=\frac{3}{2} v R T ; U_{2}=\frac{5}{2} v R T
$$

Calculate:

$$
\begin{aligned}
& U_{1}=\frac{3}{2} 5 \cdot 8.31 \cdot 300=\frac{3}{2} 12465=18697.5 \mathrm{~J} \\
& U_{2}=\frac{5}{2} 5 \cdot 8.31 \cdot 300=\frac{5}{2} 12465=31162.5 \mathrm{~J}
\end{aligned}
$$

And

$$
\frac{U_{2}}{U_{1}}=\frac{5}{3}
$$

Answer.

$$
U_{1}=\frac{3}{2} v R T=18697.5 \mathrm{~J}
$$

$$
U_{2}=\frac{5}{2} v R T=31162.5 \mathrm{~J}
$$

$$
\frac{U_{2}}{U_{1}}=\frac{5}{3}
$$

http://www.AssignmentExpert.com/

