Answer on Question \#43118-Physics-Molecular Physics-Thermodynamics

A quantity of 5 moles of an ideal gas at temperature 200c and suffers an increase of pressure from 2atm to 6atm without change of temperature find

1-initial and final volume.

Solution

For an ideal gas the state equation is

$$
p V=n R T
$$

Initial volume of an ideal gas is

$$
V_{i}=\frac{n R T}{p_{i}}=\frac{5 \text { mole } \cdot 8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \mathrm{~K}} \cdot 473 \mathrm{~K}}{202650 \mathrm{~Pa}}=0.097 \mathrm{~m}^{3} .
$$

The temperature doesn't change, that's why $p V=$ const and $p_{i} V_{i}=p_{f} V_{f}$.
Final volume of an ideal gas is

$$
V_{f}=\frac{p_{i} V_{i}}{p_{f}}=\frac{V_{i}}{3}=\frac{0.097}{3} m^{3}=0.032 \mathrm{~m}^{3}
$$

2-work done during this process and which do the work.

Solution

In isothermal process gas expands to the new volume and work is done on the gas is

$$
W=-\int_{V_{1}}^{V_{2}} P d V
$$

where $P=n R T \cdot \frac{1}{V}$.

$$
W=-\int_{V_{1}}^{V_{2}} n R T \cdot \frac{1}{V} d V=-n R T \ln \frac{V_{2}}{V_{1}}=-P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}=-202650 \cdot 0.097 \ln \frac{1}{3}=21.6 \cdot 10^{3} \mathrm{~J}=21.6 \mathrm{~kJ}
$$

W have sign " + ", so the work is done on the gas.

